

Discrete Mathematics

Lecture 03

Dr. Ahmed Hagag

Faculty of Computers and Artificial Intelligence Benha University

Spring 2023

P(x) is the statement "x has taken a course in calculus" and the domain consists of the students in your class.

 $\forall x P(x)$:

P(x) is the statement "x has taken a course in calculus" and the domain consists of the students in your class.

$\forall x P(x)$:

"Every student in your class has taken a course in calculus"

P(x) is the statement "x has taken a course in calculus" and the domain consists of the students in your class.

 $\forall x P(x)$:

"Every student in your class has taken a course in calculus"

The negation of this statement is

P(x) is the statement "x has taken a course in calculus" and the domain consists of the students in your class.

 $\forall x P(x)$:

"Every student in your class has taken a course in calculus"

The negation of this statement is

"There is at least one student in your class who has not taken a course in calculus"

P(x) is the statement "x has taken a course in calculus" and the domain consists of the students in your class.

 $\forall x P(x)$:

"Every student in your class has taken a course in calculus"

The negation of this statement is

"There is at least one student in your class who has not taken a course in calculus"

$$\neg \forall x P(x)$$

P(x) is the statement "x has taken a course in calculus" and the domain consists of the students in your class.

 $\forall x P(x)$:

"Every student in your class has taken a course in calculus"

The negation of this statement is

"There is at least one student in your class who has not taken a course in calculus"

$$\neg \forall x P(x) \equiv \exists x \neg P(x)$$

P(x) is the statement "x has taken a course in calculus" and the domain consists of the students in your class.

 $\exists x P(x) :$

P(x) is the statement "x has taken a course in calculus" and the domain consists of the students in your class.

$\exists x P(x) :$

"At least one student in your class has taken a course in calculus"

P(x) is the statement "x has taken a course in calculus" and the domain consists of the students in your class.

 $\exists x P(x) :$

"At least one student in your class has taken a course in calculus"

The negation of this statement is

P(x) is the statement "x has taken a course in calculus" and the domain consists of the students in your class.

 $\exists x P(x) :$

"At least one student in your class has taken a course in calculus"

The negation of this statement is

"Every student in this class has not taken calculus"

P(x) is the statement "x has taken a course in calculus" and the domain consists of the students in your class.

 $\exists x P(x) :$

"At least one student in your class has taken a course in calculus"

The negation of this statement is

"Every student in this class has not taken calculus"

 $\neg \exists x P(x)$

P(x) is the statement "x has taken a course in calculus" and the domain consists of the students in your class.

 $\exists x P(x) :$

"At least one student in your class has taken a course in calculus"

The negation of this statement is

"Every student in this class has not taken calculus"

$$\neg \exists x P(x) \equiv \forall x \neg P(x)$$

- Consider the following argument involving propositions (which, by definition, is a sequence of propositions):
- "If you have a current password, then you can log onto the network."
- "You have a current password."
- Therefore,
- "You can log onto the network."

Consider the following argument involving propositions (which, by definition, is a sequence of propositions):

"If you have a current password, then you can log onto the network."

"You have a current password."

Premises

Therefore,

"You can log onto the network."

Conclusion

Consider the following argument involving propositions (which, by definition, is a sequence of propositions):

Consider the following argument involving propositions (which, by definition, is a sequence of propositions):

This argument is valid if $((p \rightarrow q) \land p) \rightarrow q$ is a tautology.

An **argument** in propositional logic is a sequence of propositions. All the proposition in the argument are called **premises** and the final proposition is called the **conclusion**.

$$p \rightarrow q$$

$$p$$
Premises
$$p$$

$$\cdot q$$
Conclusion

This argument is valid if $((p \rightarrow q) \land p) \rightarrow q$ is a tautology.

We can always use a truth table to show that an argument form is valid.

p

We can always use a truth table to show that an argument form is valid. Premise 1

p	q	$p \rightarrow q$		
Т	Т	Т		
Т	F	F		
F	Т	Т		
F	F	Т		

 $p \rightarrow q$

p

We can always use a truth table to show that an argument form is valid. Premise 1 Premise 2

p	q	p ightarrow q	p ♥
Τ	Т	Т	Т
Т	F	F	Т
F	Т	Т	F
F	F	Т	F

 $p \rightarrow q$

p

We can always use a truth table to show that an argument form is valid. Premise 1 Premise 2

p	q	p ightarrow q	p♥	$(p ightarrow q) \wedge p$	
Τ	Т	Т	Т	Т	
Τ	F	F	Т	F	
F	Т	Т	F	F	
F	F	Т	F	F	

 $p \rightarrow q$

p

We can always use a truth table to show that an argument form is valid.

Premise 1	Premise 2	Conclusion

p	q	p ightarrow q	p♥	$(p ightarrow q) \land p$	₩ q	
Т	Т	Т	Т	Т	Т	
Т	F	F	Т	F	F	
F	Т	Т	F	F	Т	
F	F	Т	F	F	F	

 $p \rightarrow q$

p

We can always use a truth table to show that an argument form is valid.

	T	rennse i		31011		
p	q	$p \rightarrow q$	p ♥	$(p ightarrow q) \wedge p$	∀ q	$((p \rightarrow q) \land p) \rightarrow q$
Τ	Т	Т	Т	Т	T	Т
Т	F	F	Т	F	F	Т
F	Т	Т	F	F	Т	Т
F	F	Т	F	F	F	Т

 $p \rightarrow q$

p

 $((p \rightarrow q) \land p) \rightarrow q$ is a tautology

TABLE 1 Rules of I	Part 1	
Rule of Inference	Tautology	Name
$ \begin{array}{c} p \\ p \rightarrow q \\ \therefore \overline{q} \end{array} $	$(p \land (p \to q)) \to q$	Modus ponens
$ \begin{array}{c} \neg q \\ p \to q \\ \therefore \\ \neg p \end{array} $	$(\neg q \land (p \rightarrow q)) \rightarrow \neg p$	Modus tollens
$p \to q$ $\frac{q \to r}{r}$ $\therefore \frac{p \to r}{p \to r}$	$((p \to q) \land (q \to r)) \to (p \to r)$	Hypothetical syllogism
$p \lor q$ $\neg p$ $\therefore \frac{\neg p}{q}$	$((p \lor q) \land \neg p) \to q$	Disjunctive syllogism

TABLE 1 Rules of Inference.							
Rule of Inference	Tautology	Name					
$\therefore \frac{p}{p \lor q}$	$p \to (p \lor q)$	Addition					
$\therefore \frac{p \land q}{p}$	$(p \land q) \rightarrow p$	Simplification					
$ \begin{array}{c} p\\ q\\ \therefore \frac{q}{p \wedge q} \end{array} $	$((p) \land (q)) \rightarrow (p \land q)$	Conjunction					
$p \lor q$ $\neg p \lor r$ $\therefore q \lor r$	$((p \lor q) \land (\neg p \lor r)) \to (q \lor r)$	Resolution					

Example1

Using the truth table to show that the hypotheses $p \lor q$

 $\neg p \lor r$

lead to the conclusion

 $q \vee r$

$p \lor q$	$((p \lor q) \land (\neg p \lor r)) \to (q \lor r)$	Resolution
$\neg p \lor r$		
$\therefore \overline{q \lor r}$		

Example1

Using the truth table to show that the hypotheses

$p \lor q$			P	Premise 1	l	Premi	se 2 C	conclusion
$\neg p \lor r$	p	q	r	$p \lor q$	$\neg p$	$\neg p \lor r$	$(p \lor q) \land (\neg p \lor r)$	$q \lor r$
$\neg p \lor r$	Т	Т	Т	Т	F	Т	T	Т
	Т	Т	F	Т	F	F	F	Т
	Т	F	Т	Т	F	Т	Т	Т
$q \lor r$	Т	F	F	Т	F	F	F	F
	F	Т	Т	Т	Τ	Т	Т	Т
	F	Т	F	Τ	Τ	Т	T	Т
	F	F	Т	F	Т	Т	F	Т
	F	F	F	F	Т	Т	F	F

©Ahmed Hagag

BS102 Discrete Mathematics

Example2

Using the rules of inference to show that the hypotheses $\neg p \land q$ $r \rightarrow p$ $\neg r \rightarrow s$

 $s \rightarrow t$

lead to the conclusion

t

Example2

$\neg p \land q$	$\frac{p \wedge q}{p}$	$(p \land q) \rightarrow p$	Simplification
$\therefore \neg p$	··		

BS102 Discrete Mathematics

Example2

$\neg p \land q$	$\frac{p \land q}{p}$	$(p \land q) \rightarrow p$	Simplification
$\therefore \neg p$	· · P		

BS102 Discrete Mathematics

 $s \rightarrow t$

Example2

$\neg \gamma \to S \qquad \qquad \therefore \frac{p \to q}{q}$	$\neg r$	р	$(p \land (p \to q)) \to q$	Modus ponens
	$\neg r \rightarrow s$			

•• S

BS102 Discrete Mathematics

Example2

$\neg r$	p	$(p \land (p \to q)) \to q$	Modus ponens
$\neg r \rightarrow s$	$\therefore \frac{p \to q}{q}$		

: S

S

conclusion

Chapter 2: Basic Structures

- Sets.
- Functions.
- Sequences, and Summations.
- Matrices.

A set is an unordered collection of objects.

The objects in a set are called the *elements*, or *members*, of the set. A set is said to contain its elements.

$$S = \{a, b, c, d\}$$

We write $a \in S$ to denote that a is an element of the set S. The notation $e \notin S$ denotes that e is not an element of the set S.

The set *O* of odd positive integers less than 10 can be expressed by $O = \{1, 3, 5, 7, 9\}$.

The set of positive integers less than 100 can be denoted by $\{1, 2, 3, \dots, 99\}$.

ellipses (...)

Sets (4/24)

Another way to describe a set is to use **set builder** notation.

The set *O* of odd positive integers less than 10 can be expressed by $O = \{1, 3, 5, 7, 9\}$.

 $O = \{x \mid x \text{ is an odd positive integer less than } 10\},\$

$$O = \{x \in \mathbb{Z}^+ \mid x \text{ is odd and } x < 10\}.$$

 $N = \{0, 1, 2, 3, ...\}$, the set of all **natural numbers** $Z = \{..., -2, -1, 0, 1, 2, ...\}$, the set of all integers $\mathbf{Z}^+ = \{1, 2, 3, \dots\}$, the set of all **positive integers** $\mathbf{Q} = \{p/q \mid p \in \mathbf{Z}, q \in \mathbf{Z}, and q \neq 0\},\$ the set of all rational numbers **R**, the set of all **real numbers R**⁺, the set of all **positive real numbers C**, the set of all **complex numbers**.

Interval Notation

Closed interval [a, b] Open interval (a, b)

$$[a,b] = \{x \mid a \le x \le b\}$$

$$[a,b) = \{x \mid a \le x < b\}$$

$$(a,b] = \{x \mid a < x \le b\}$$

$$(a,b) = \{x \mid a < x < b\}$$

If A and B are sets, then A and B are equal if and only if $\forall x (x \in A \Leftrightarrow x \in B)$. We write A = B, if A and B are equal sets.

- The sets {1, 3, 5} and {3, 5, 1} are equal, because they have the same elements.
- {1,3,3,5,5} is the same as the set
 {1,3,5} because they have the same elements.

Empty Set

There is a special set that has no elements. This set is called the empty set, or null set, and is denoted by \emptyset . The empty set can also be denoted by $\{$

Cardinality

The cardinality is the number of distinct elements in S. The cardinality of S is denoted by |S|.

- $S = \{a, b, c, d\}$ |S| = 4
- $A = \{1, 2, 3, 7, 9\}$
- $\emptyset = \{ \}$

- $S = \{a, b, c, d\}$ |S| = 4
- $A = \{1, 2, 3, 7, 9\}$ |A| = 5

$$S = \{a, b, c, d, \{2\}\}$$

 $|S| =$

$A = \{1, 2, 3, \{2,3\}, 9\}$ |A| =

 $\{\emptyset\} = \{\{ \}\}\$ $|\{\emptyset\}| =$

$$S = \{a, b, c, d, \{2\}\}$$

 $|S| = 5$

$$A = \{1, 2, 3, \{2,3\}, 9\}$$
$$|A| = 5$$

 $\{\emptyset\} = \{\{\\}\}$ $|\{\emptyset\}| = 1$

Infinite

A set is said to be **infinite** if it is not finite. The set of positive integers is infinite.

$$Z^+ = \{1, 2, 3, \dots\}$$

Subset

The set A is said to be a subset of B if and only if every element of A is also an element of B.

We use the notation $A \subseteq B$ to indicate that A is a subset of the set B.

$$A \subseteq B \iff \forall x (x \in A \rightarrow x \in B)$$

Subset

The set *A* is said to be a subset of *B* if and only if every element of *A* is also an element of *B*.

We use the notation $A \subseteq B$ to indicate that A is a subset of the set B.

 $(A \subseteq B) \equiv (B \supseteq A)$

 $A \subseteq B \iff \forall x (x \in A \rightarrow x \in B)$

Subset

For every set S, (i) $\emptyset \subseteq S$ and (ii) $S \subseteq S$.

To show that two sets *A* and *B* are equal, show that $A \subseteq B$ and $B \subseteq A$.

Proper Subset

The set *A* is a subset of the set *B* but that $A \neq B$, we write $A \subset B$ and say that *A* is a **proper subset** of *B*.

$A \subset B \iff (\forall x (x \in A \rightarrow x \in B) \land \exists x (x \in B \land x \notin A))$

For each of the following sets, determine whether 3 is an element of that set.

 $\{1,2,3,4\}$ $\{\{1\},\{2\},\{3\},\{4\}\}$ $\{1,2,\{1,3\}\}$

For each of the following sets, determine whether 3 is an element of that set.

```
3 \in \{1,2,3,4\}3 \notin \{\{1\},\{2\},\{3\},\{4\}\}3 \notin \{1,2,\{1,3\}\}
```


Venn Diagram

 $A = \{1, 2, 3, 4, 7\}$ $B = \{0, 3, 5, 7, 9\}$ $C = \{1, 2\}$

Venn Diagram

©Ahmed Hagag

The set of all subsets.

If the set is *S*. The power set of *S* is denoted by P(S). The number of elements in the power set is $2^{|S|}$

The set of all subsets.

If the set is *S*. The power set of *S* is denoted by P(S). The number of elements in the power set is $2^{|S|}$

 $S = \{1,2,3\}$ $P(S) = 2^{S}$ $|P(S)| = 2^{3} = 8$ elements

 $= \left\{ \emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\} \right\}$

What is the power set of the empty set?

What is the power set of the empty set?

$$\mathcal{P}(\emptyset) = \{\emptyset\}.$$

What is the power set of the set $\{\emptyset\}$?

What is the power set of the set $\{\emptyset\}$?

 $\mathcal{P}(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\}.$

©Ahmed Hagag

Discrete Mathematics

The ordered *n*-tuple

The ordered *n*-tuple $(a_1, a_2, ..., a_n)$ is the ordered collection that has a_1 as its first element, a_2 as its second element, ..., and a_n as its *n*th element.

In particular, ordered 2-tuples are called ordered pairs (e.g., the ordered pairs (*a*, *b*))

Cartesian Products

- Let *A* and *B* be sets.
- The **Cartesian product** of *A* and *B*, denoted by $A \times B$, is the set of all ordered pairs (a, b), where $a \in A$ and $b \in B$. Hence, $A \times B = \{(a, b) \mid a \in A \land b \in B\}$.

Cartesian Products - Example

Let
$$A = \{1,2\}$$
, and $B = \{a, b, c\}$
 $A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\}.$

$$|A \times B| = |A| * |B| = 2 * 3 = 6$$

Cartesian Products - Example

Let
$$A = \{1,2\}$$
, and $B = \{a, b, c\}$
 $A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\}.$

$$|A \times B| = |A| * |B| = 2 * 3 = 6$$

Find $B \times A$?

The Cartesian product of more than two sets.

The Cartesian product of the sets $A_1, A_2, ..., A_n$, denoted by $A_1 \times A_2 \times \cdots \times A_n$, is the set of ordered *n*-tuples $(a_1, a_2, ..., a_n)$, where a_i belongs to A_i for i = 1, 2, ..., n. In other words,

$$A_1 \times A_2 \times \cdots \times A_n =$$

{ $(a_1, a_2, \dots, a_n) \mid a_i \in A_i \text{ for } i = 1, 2, \dots, n$ }.

 $A \times B \times C$, where $A = \{0, 1\}, B = \{1, 2\}$, and $C = \{0, 1, 2\}$

$A \times B \times C = \{(0, 1, 0), (0, 1, 1), (0, 1, 2), (0, 2, 0), (0, 2, 1), (0, 2, 2), (1, 1, 0), (1, 1, 1), (1, 1, 2), (1, 2, 0), (1, 2, 1), (1, 2, 2)\}.$

Union

Let *A* and *B* be sets. The **union** of the sets A and B, denoted by $A \cup B$, is the set that contains those elements that are either in *A* or in *B*, or in both.

$$A \cup B = \{x \mid x \in A \lor x \in B\}$$

Union

Let *A* and *B* be sets. The **union** of the sets A and B , denoted by $A \cup B$, is the set that contains those elements that are either in *A* or in *B* , or in both.

 $A \cup B$ is shaded.

Union

Let A and B be sets. The **union** of the sets A and B , denoted by $A \cup B$, is the set that contains those elements that are either in A or in B , or in both.

The union of the sets $\{1, 3, 5\}$ and $\{1, 2, 3\}$

is the set {1, 2, 3, 5}

Intersection

Let *A* and *B* be sets. The **intersection** of the sets A and B , denoted by $A \cap B$, is the set that contains those

elements that are in both A and B.

$$A \cap B = \{x \mid x \in A \land x \in B\}$$

Intersection

Let *A* and *B* be sets. The **intersection** of the sets A and

B , denoted by $A \cap B$, is the set that contains those

elements that are in both A and B.

 $A \cap B$ is shaded.

Intersection

Let *A* and *B* be sets. The **intersection** of the sets A and

B , denoted by $A \cap B$, is the set that contains those

elements that are in both A and B.

The intersection of the sets $\{1, 3, 5\}$ and $\{1, 2, 3\}$ is the set $\{1, 3\}$

Set Operations (3/7)

Disjoint

Two sets are called **disjoint** if their intersection is the empty set.

$A \cap B = \emptyset$

©Ahmed Hagag

Discrete Mathematics

Difference

Let *A* and *B* be sets. The difference of *A* and *B*, denoted by A - B, is the set containing those elements that are in *A* but not in *B*.

$$A - B = \{ x \mid x \in A \land x \notin B \}$$

Difference

Let *A* and *B* be sets. The difference of *A* and *B*, denoted by A - B, is the set containing those elements that are in *A* but not in *B*.

$$A = \{1,3,5\}, \qquad B = \{1,2,3\}$$

 $A - B = \{5\}$

Set Operations (4/7)

Difference

Discrete Mathematics

Complement

Let *U* be the universal set.

The complement of the set A , denoted by \bar{A}

An element x belongs to U if and only if $x \notin A$.

$$\overline{A} = \{ x \in U \mid x \notin A \}$$

Complement

Let *U* be the universal set.

The complement of the set A , denoted by \overline{A}

An element x belongs to U if and only if $x \notin A$.

$$U = \{1, 2, 3, 4, 5\}, \qquad A = \{1, 3\}$$

 $\overline{A} = \{2, 4, 5\}$

Set Operations (5/7)

Complement

Set Operations (6/7)

Generalized Unions

We use the notation

$$A_1 \cup A_2 \cup \dots \cup A_n = \bigcup_{i=1}^n A_i$$

to denote the union of the sets A_1, A_2, \ldots, A_n .

Set Operations (6/7)

Generalized Unions

 $A \cup B \cup C$ is shaded.

Set Operations (7/7)

Generalized Intersections

We use the notation

$$A_1 \cap A_2 \cap \dots \cap A_n = \bigcap_{i=1}^n A_i$$

to denote the intersection of the sets A_1, A_2, \ldots, A_n .

Set Operations (7/7)

Generalized Intersections

 $A \cap B \cap C$ is shaded.

Video Lectures

All Lectures: https://www.youtube.com/playlist?list=PLxlvc-MGOs6gZIMVYDDEtUHJmfUquCjwz

Lecture #3:https://www.youtube.com/watch?v=bNNpZa3fwqD&list=PLxlvc-MGDs6gZIMVYDDEtUHJmfUquCjwz&index=8

Up to time 00:31:18

https://www.youtube.com/watch?v=1FEEjRCWo6E&list=PLxlvc-MGDs6gZIMVYDDEtUHJmfUquCjwz&index=10

https://www.youtube.com/watch?v=RdbDHQddn3Y&list=PLxlvc-MGDs6gZIMVYDDEtUHJmfUquCjwz&index=11

https://www.youtube.com/watch?v=iSuD96uQ2zU&list=PLxlvc-MGDs6gZIMVYDDEtUHJmfUquCjwz&index=12 Up to time 00:12:46

Thank You

Dr. Ahmed Hagag ahagag@fci.bu.edu.eg