Discrete Mathematics

Lecture 03

Dr. Ahmed Hagag

Faculty of Computers and Artificial Intelligence

Benha University

Spring 2023

Negating Quantified Expressions (1/4)

كلية الحاسبات والذكاء الإصطناعي

Negating Quantified Expressions:

$P(x)$ is the statement " x has taken a course in calculus" and the domain consists of the students in your class.
$\forall \boldsymbol{x P}(x):$

Negating Quantified Expressions (1/4)

كلية الحاسبات والذكاء الإصطناعي

Negating Quantified Expressions:

$P(x)$ is the statement " x has taken a course in calculus" and the domain consists of the students in your class.
$\forall \boldsymbol{x P}(x)$:
"Every student in your class has taken a course in calculus"

Negating Quantified Expressions (2/4)

كلية الحاسبات والذكاء الإصطناعي

Negating Quantified Expressions:

$P(x)$ is the statement " x has taken a course in calculus" and the domain consists of the students in your class.
$\forall x P(x):$
"Every student in your class has taken a course in calculus"
The negation of this statement is

Negating Quantified Expressions (2/4)

كلية الحاسبات والذكاء الإصطناعي

Negating Quantified Expressions:

$P(x)$ is the statement " x has taken a course in calculus" and the domain consists of the students in your class.
$\forall x P(x):$
"Every student in your class has taken a course in calculus"
The negation of this statement is
"There is at least one student in your class who has not taken a course in calculus"

Negating Quantified Expressions (2/4)

كلية الحاسبات والذكاء الإصطناعي

Negating Quantified Expressions:

$P(x)$ is the statement " x has taken a course in calculus" and the domain consists of the students in your class.
$\forall x P(x):$
"Every student in your class has taken a course in calculus"
The negation of this statement is
"There is at least one student in your class who has not taken a course in calculus"

$$
\neg \forall \boldsymbol{x P}(\boldsymbol{x})
$$

Negating Quantified Expressions (2/4)

كلية الحاسبات والذكاء الإصطناعي

Negating Quantified Expressions:

$P(x)$ is the statement " x has taken a course in calculus" and the domain consists of the students in your class.
$\forall x P(x):$
"Every student in your class has taken a course in calculus"
The negation of this statement is
"There is at least one student in your class who has not taken a course in calculus"

$$
\neg \forall x P(x) \equiv \exists x \neg P(x)
$$

Negating Quantified Expressions (3/4)

كلية الحاسبات والذكاء الإصطناعي

Negating Quantified Expressions:

$P(x)$ is the statement " x has taken a course in calculus" and the domain consists of the students in your class.
$\exists x P(x):$

Negating Quantified Expressions (3/4)

كلية الحاسبات والذكاء الإصطناعي

Negating Quantified Expressions:

$P(x)$ is the statement " x has taken a course in calculus" and the domain consists of the students in your class.
$\exists x P(x):$
"At least one student in your class has taken a course in calculus"

Negating Quantified Expressions (4/4)

كلية الحاسبات والذكاء الإصطناعي

Negating Quantified Expressions:

$P(x)$ is the statement " x has taken a course in calculus" and the domain consists of the students in your class.
$\exists x P(x):$
"At least one student in your class has taken a course in calculus"
The negation of this statement is

Negating Quantified Expressions (4/4)

كلية الحاسبات والذكاء الإصطناعي

Negating Quantified Expressions:

$P(x)$ is the statement " x has taken a course in calculus" and the domain consists of the students in your class.
$\exists x P(x):$
"At least one student in your class has taken a course in calculus"
The negation of this statement is
"Every student in this class has not taken calculus"

Negating Quantified Expressions (4/4)

كلية الحاسبات والذكاء الإصطناعي

Negating Quantified Expressions:

$P(x)$ is the statement " x has taken a course in calculus" and the domain consists of the students in your class.
$\exists x P(x):$
"At least one student in your class has taken a course in calculus"
The negation of this statement is
"Every student in this class has not taken calculus"

$$
\neg \exists \boldsymbol{x P}(x)
$$

Negating Quantified Expressions (4/4)

كلية الحاسبات والذكاء الإصطناعي

Negating Quantified Expressions:

$P(x)$ is the statement " x has taken a course in calculus" and the domain consists of the students in your class.
$\exists x P(x):$
"At least one student in your class has taken a course in calculus"
The negation of this statement is
"Every student in this class has not taken calculus"

$$
\neg \exists x P(x) \equiv \forall x \neg P(x)
$$

Rules of Inference (1/9)

Valid Arguments in Propositional Logic

Consider the following argument involving propositions (which, by definition, is a sequence of propositions):
"If you have a current password, then you can log onto the network."
"You have a current password."
Therefore,
"You can \log onto the network."

Rules of Inference (1/9)

Valid Arguments in Propositional Logic

Consider the following argument involving propositions (which, by definition, is a sequence of propositions):
"If you have a current password, then you can log onto the network."
"You have a current password."
Premises
Therefore,
"You can \log onto the network."
Conclusion

Rules of Inference (1/9)

Valid Arguments in Propositional Logic

Consider the following argument involving propositions (which, by definition, is a sequence of propositions):

$$
\begin{aligned}
& p \rightarrow q \\
& p
\end{aligned}
$$

Premises

$\therefore q$
Conclusion

Rules of Inference (1/9)

Valid Arguments in Propositional Logic

Consider the following argument involving propositions (which, by definition, is a sequence of propositions):

$$
\begin{aligned}
& p \rightarrow q \\
& p
\end{aligned}
$$

Premises

$\therefore q$
Conclusion
This argument is valid if $((p \rightarrow q) \wedge p) \rightarrow q$ is a tautology.

Rules of Inference (1/9)

Valid Arguments in Propositional Logic

An argument in propositional logic is a sequence of propositions. All the proposition in the argument are called premises and the final proposition is called the conclusion.

$$
\begin{aligned}
& p \rightarrow q \\
& p
\end{aligned}
$$

Premises

$\therefore q$
Conclusion
This argument is valid if $((p \rightarrow q) \wedge p) \rightarrow q$ is a tautology.

Rules of Inference (2/9)

Valid Arguments in Propositional Logic

We can always use a truth table to show that an argument form is valid.

$$
p \rightarrow q
$$

p
$\therefore q$

Rules of Inference (2/9)

Valid Arguments in Propositional Logic

We can always use a truth table to show that an argument form is valid.

Premise 1

p
$\therefore q$

Rules of Inference (2/9)

Valid Arguments in Propositional Logic

We can always use a truth table to show that an argument form is valid.

Premise 1 Premise 2

p
$\therefore q$

Rules of Inference (2/9)

Valid Arguments in Propositional Logic

We can always use a truth table to show that an argument form is valid.

Premise 1 Premise 2

	p	q	$p \rightarrow q$	p	$(p \rightarrow q) \wedge p$	
	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}	
	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{F}	
	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}	
$\boldsymbol{p} \rightarrow \boldsymbol{q}$	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}	

p
$\therefore q$

Rules of Inference (2/9)

Valid Arguments in Propositional Logic

We can always use a truth table to show that an argument form is valid.

$$
\text { Premise } 1 \text { Premise } 2 \quad \text { Conclusion }
$$

	p	q	$p \rightarrow q$	p	$(p \rightarrow q) \wedge p$	q	
	T	T	T	T	T	T	
	T	F	F	T	F	F	
	F	T	T	F	F	T	
$p \rightarrow q$	F	F	T	F	F	F	

p
$\therefore q$

Rules of Inference (2/9)

Valid Arguments in Propositional Logic

We can always use a truth table to show that an argument form is valid.

$$
\text { Premise } 1 \text { Premise } 2 \quad \text { Conclusion }
$$

	p	q	$p \rightarrow q$	p	$(p \rightarrow q) \wedge p$	q	$((p \rightarrow q) \wedge p) \rightarrow q$
	T	T	T	T	T	T	T
	T	F	F	T	F	F	T
	F	T	T	F	F	T	T
$p \rightarrow q$	F	F	T	F	F	F	T

p

$$
((p \rightarrow q) \wedge p) \rightarrow q \text { is a tautology }
$$

$\therefore q$

Rules of Inference (3/9)

TABLE 1 Rules of Inference.

Part 1

Rule of Inference	Tautology	Name
p	$(p \wedge(p \rightarrow q)) \rightarrow q$	Modus ponens
$\therefore \frac{p \rightarrow q}{q}$		
$\neg q$	$(\neg q \wedge(p \rightarrow q)) \rightarrow \neg p$	Modus tollens
$\therefore \frac{p \rightarrow q}{\neg p}$		
$p \rightarrow q$ $q \rightarrow r$	$((p \rightarrow q) \wedge(q \rightarrow r)) \rightarrow(p \rightarrow r)$	Hypothetical syllogism
$\therefore \frac{p \rightarrow r}{}$		
$\quad p \vee q$	$((p \vee q) \wedge \neg p) \rightarrow q$	Disjunctive syllogism
$\therefore \frac{\neg p}{q}$		

Rules of Inference (3/9)

TABLE 1 Rules of Inference.
Part 2

Rule of Inference	Tautology	Name
$\therefore \overline{p \vee q}$	$p \rightarrow(p \vee q)$	Addition
$\quad$$p \wedge q$ p	$(p \wedge q) \rightarrow p$	Simplification
p	$((p) \wedge(q)) \rightarrow(p \wedge q)$	Conjunction
$\therefore \frac{q}{p \wedge q}$		
$p \vee q$	$((p \vee q) \wedge(\neg p \vee r)) \rightarrow(q \vee r)$	Resolution
$\therefore \frac{\neg p \vee r}{q \vee r}$		

Rules of Inference (4/9)

كلية الحاسبات والذكاء الإصطناعي

Example1

Using the truth table to show that the hypotheses
$p \vee q$
$\neg p \vee r$
lead to the conclusion
$q \vee r$

	$p \vee q$	$((p \vee q) \wedge(\neg p \vee r)) \rightarrow(q \vee r)$
	$\neg p \vee r$	Resolution
\therefore	$q \vee r$	

Rules of Inference (4/9)

كلية الحاسبات والذكاء الإصطناعي

Example1

Using the truth table to show that the hypotheses

$p \vee q$	Premise 1					Premise 2 C		onclusion
	p	q	r	$p \vee q$	$\neg p$	$\neg p \vee r$	$(p \vee q) \wedge(\neg p \vee r)$	$q \vee r$
$\neg p \vee r$	T	T	T	T	F	T	T	T
	T	T	F	T	F	F	F	T
$q \vee r$	T	F	T	T	F	T	T	
	T	F	F	T	F	F	F	F
	F	T	T	T	T	T	T	T
	F	T	F	T	T	T	T	
	F	F	T	F	T	T	F	T
	F	F	F	F	T	T	F	F

Rules of Inference (5/9)

كلية الحاسبات والذكاء الإصطناعي

Example2

Using the rules of inference to show that the hypotheses
$\neg p \wedge q$
$r \rightarrow p$
$\neg r \rightarrow S$
$s \rightarrow t$
lead to the conclusion
t

Rules of Inference (5/9)

Example2

$\neg p \wedge q$
$\therefore \neg p$

$\therefore p \wedge q$	$(p \wedge q) \rightarrow p$	Simplification

$$
\begin{aligned}
& \neg p \wedge q \\
& r \rightarrow p \\
& \neg r \rightarrow s \\
& s \rightarrow t
\end{aligned}
$$

Rules of Inference (5/9)

كلية الحاسبات والذكاء الإصطناعي

Example2

$\neg p \wedge q$
$\therefore \neg p$

$\quad p \wedge q$	$(p \wedge q) \rightarrow p$	Simplification
$\therefore \bar{p}$		

$\begin{aligned} & \neg p \\ & r \rightarrow p \end{aligned}$	$\begin{aligned} & \neg q \\ & \therefore p \rightarrow q \\ & \neg p \end{aligned}$	$(\neg q \wedge(p \rightarrow q)) \rightarrow \neg p$	Modus tollens
$\therefore \neg r$			

Example2

$\neg r$
$\neg r \rightarrow s$

p	$(p \wedge(p \rightarrow q)) \rightarrow q$	Modus ponens
$\therefore \frac{p \rightarrow q}{q}$		

$\therefore S$

Rules of Inference (5/9)

كلية الحاسبات والذكاء الإصطناعي

Example2

$\neg r$
$\neg r \rightarrow S$

p	$(p \wedge(p \rightarrow q)) \rightarrow q$	Modus ponens
$\therefore \frac{p \rightarrow q}{q}$		

$\therefore S$
S
$s \rightarrow t$
$\therefore t$
conclusion

Chapter 2: Basic Structures

كلية الحاسبات والذكاء الإصطناعي

- Sets.
- Functions.
- Sequences, and Summations.
- Matrices.

Sets (1/24)

A set is an unordered collection of objects.

The objects in a set are called the elements, or members, of the set. A set is said to contain its elements.

Sets (2/24)

كلية الحاسبات والذكاء الإصطناعي

$S=\{a, b, c, d\}$
We write $a \in S$ to denote that a is an element of the set S. The notation $e \notin S$ denotes that e is not an element of the set S.

Sets (3/24)

كلية الحاسبات والذكاء الإصطناعي

The set O of odd positive integers less than 10 can be expressed by $O=\{1,3,5,7,9\}$.

The set of positive integers less than 100 can be denoted by $\{1,2,3, \ldots, 99\}$.
ellipses (...)

Sets (4/24)

Another way to describe a set is to use set builder notation.

The set O of odd positive integers less than 10 can be expressed by $O=\{1,3,5,7,9\}$.
$O=\{x \mid x$ is an odd positive integer less than 10$\}$,
$O=\left\{x \in \mathbf{Z}^{+} \mid x\right.$ is odd and $\left.x<10\right\}$.
$\mathbf{N}=\{0,1,2,3, \ldots\}$, the set of all natural numbers
$\mathbf{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$, the set of all integers
$\mathbf{Z}^{+}=\{1,2,3, \ldots\}$, the set of all positive integers
$\mathbf{Q}=\{p / q \mid p \in \mathbf{Z}, q \in \mathbf{Z}$, and $q \neq 0\}$,
the set of all rational numbers
\mathbf{R}, the set of all real numbers
\mathbf{R}^{+}, the set of all positive real numbers
\mathbf{C}, the set of all complex numbers.

Interval Notation

Closed interval $[a, b]$
Open interval (a, b)
$[a, b]=\{x \mid a \leq x \leq b\}$
$[a, b)=\{x \mid a \leq x<b\}$
$(a, b]=\{x \mid a<x \leq b\}$
$(a, b)=\{x \mid a<x<b\}$

Sets (7/24)

If A and B are sets, then A and B are equal if and only if $\forall x(x \in A \leftrightarrow x \in B)$. We write $A=B$, if A and B are equal sets.

- The sets $\{1,3,5\}$ and $\{3,5,1\}$ are equal, because they have the same elements.
- $\{1,3,3,5,5,5\}$ is the same as the set $\{1,3,5\}$ because they have the same elements.

Sets (8/24)

Empty Set

There is a special set that has no elements. This set is called the empty set, or null set, and is denoted by \emptyset. The empty set can also be denoted by $\}$

Sets (9/24)

```
كلية الحاسبات والذكاء الإصطناعي
```


Cardinality

The cardinality is the number of distinct elements in S. The cardinality of S is denoted by $|S|$.

Sets (10/24)

Example1

$$
\begin{aligned}
& S=\{a, b, c, d\} \\
& |S|=4 \\
& A=\{1,2,3,7,9\} \\
& \emptyset=\{ \}
\end{aligned}
$$

Sets (10/24)

Example1

$$
\begin{aligned}
& S=\{a, b, c, d\} \\
& |S|=4 \\
& A=\{1,2,3,7,9\} \\
& |A|=5 \\
& \emptyset=\{ \} \\
& |\varnothing|=0
\end{aligned}
$$

Example2

$S=\{a, b, c, d,\{2\}\}$
$|S|=$
$A=\{1,2,3,\{2,3\}, 9\}$
$|A|=$
$\{\varnothing\}=\{\{ \}\}$
$|\{\varnothing\}|=$

Example2

$S=\{a, b, c, d,\{2\}\}$
$|S|=5$
$A=\{1,2,3,\{2,3\}, 9\}$
$|A|=5$
$\{\varnothing\}=\{\{ \}\}$
$|\{\varnothing\}|=1$

Sets (12/24)

Infinite

A set is said to be infinite if it is not finite.
The set of positive integers is infinite.

$$
Z^{+}=\{1,2,3, \ldots\}
$$

Sets (13/24)

Subset

The set A is said to be a subset of B if and only if every element of A is also an element of B.

We use the notation $A \subseteq B$ to indicate that A is a subset of the set B.

$$
A \subseteq B \leftrightarrow \forall x(x \in A \rightarrow x \in B)
$$

Sets (13/24)

Subset

The set A is said to be a subset of B if and only if every element of A is also an element of B.

We use the notation $A \subseteq B$ to indicate that A is a subset of the set B.

$$
(A \subseteq B) \equiv(B \supseteq A)
$$

$$
A \subseteq B \leftrightarrow \forall x(x \in A \rightarrow x \in B)
$$

Sets (13/24)

كلية الحاسبات والذكاء الإصطناعي

Subset

For every set S,
(i) $\emptyset \subseteq S$ and (ii) $S \subseteq S$.

To show that two sets A and B are equal, show that $A \subseteq B$ and $B \subseteq A$.

Sets (14/24)

كلية الحاسبات والذكاء الإصطناعي

Proper Subset

The set A is a subset of the set B but that $A \neq B$, we write $A \subset B$ and say that A is a proper subset of B.

$$
A \subset B \leftrightarrow(\forall x(x \in A \rightarrow x \in B) \wedge \exists x(x \in B \wedge x \notin A))
$$

Sets (15/24)

Example

For each of the following sets, determine whether 3 is an element of that set.
$\{1,2,3,4\}$
$\{\{1\},\{2\},\{3\},\{4\}\}$
$\{1,2,\{1,3\}\}$

Sets (15/24)

Example

For each of the following sets, determine whether 3 is an element of that set.
$3 \in\{1,2,3,4\}$
$3 \notin\{\{1\},\{2\},\{3\},\{4\}\}$
$3 \notin\{1,2,\{1,3\}\}$

Sets (16/24)

Venn Diagram

$$
\begin{aligned}
& A=\{1,2,3,4,7\} \\
& B=\{0,3,5,7,9\} \\
& C=\{1,2\}
\end{aligned}
$$

Sets (17/24)

Venn Diagram

$$
\begin{aligned}
& A=\{1,2,3,4,7\} \\
& B=\{0,3,5,7,9\} \\
& C=\{1,2\}
\end{aligned}
$$

Sets (18/24)

Power Set

The set of all subsets.

If the set is S. The power set of S is denoted by $P(S)$.
The number of elements in the power set is $2^{|S|}$

Sets (18/24)

Power Set

The set of all subsets.

If the set is S. The power set of S is denoted by $P(S)$.
The number of elements in the power set is $2^{|S|}$
$S=\{1,2,3\}$

$$
|P(S)|=2^{3}=8 \text { elements }
$$

$P(S)=2^{S}$
$=\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}$

Sets (19/24)

كلية الحاسبات والذكاء الإصطناعي

Example1

What is the power set of the empty set?

Sets (19/24)

كلية الحاسبات والذكاء الإصطناعي

Example1

What is the power set of the empty set?

$\mathcal{P}(\emptyset)=\{\emptyset\}$.

Example2

What is the power set of the set $\{\emptyset\}$?

Example2

What is the power set of the set $\{\emptyset\}$?

$$
\mathcal{P}(\{\emptyset\})=\{\emptyset,\{\emptyset\}\} .
$$

Sets (21/24)

The ordered n-tuple

The ordered n-tuple $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is the ordered collection that has a_{1} as its first element, a_{2} as its second element, \ldots, and a_{n} as its nth element.

In particular, ordered 2 -tuples are called ordered pairs (e.g., the ordered pairs $(a, b))$

Sets (22/24)

كلية الحاسبات والذكاء الإصطناعي

Cartesian Products

Let A and B be sets.
The Cartesian product of A and B, denoted by $A \times B$, is the set of all ordered pairs (a, b), where $a \in A$ and
$b \in B$. Hence, $A \times B=\{(a, b) \mid a \in A \wedge b \in B\}$.

Sets (22/24)

Cartesian Products - Example

Let $A=\{1,2\}$, and $B=\{a, b, c\}$
$A \times B=\{(1, a),(1, b),(1, c),(2, a),(2, b),(2, c)\}$.

$$
|A \times B|=|A| *|B|=2 * 3=6
$$

Sets (22/24)

Cartesian Products - Example

Let $A=\{1,2\}$, and $B=\{a, b, c\}$
$A \times B=\{(1, a),(1, b),(1, c),(2, a),(2, b),(2, c)\}$.
$|A \times B|=|A| *|B|=2 * 3=6$

Find $B \times A$?

Sets (23/24)

The Cartesian product of more than two sets.

The Cartesian product of the sets $A_{1}, A_{2}, \ldots, A_{n}$, denoted by $A_{1} \times A_{2} \times \cdots \times A_{n}$, is the set of ordered n-tuples $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, where a_{i} belongs to A_{i} for $i=1,2, \ldots, n$. In other words,

$$
\begin{gathered}
A_{1} \times A_{2} \times \cdots \times A_{n}= \\
\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mid a_{i} \in A_{i} \text { for } i=1,2, \ldots, n\right\} .
\end{gathered}
$$

Sets (24/24)

كلية الحاسبات والذكاء الإصطناعي

Example:

$A \times B \times C$, where $A=\{0,1\}, B=\{1,2\}$, and $C=\{0,1,2\}$

$$
\begin{aligned}
A \times B \times C= & \{(0,1,0),(0,1,1),(0,1,2),(0,2,0),(0,2,1),(0,2,2), \\
& (1,1,0),(1,1,1),(1,1,2),(1,2,0),(1,2,1),(1,2,2)\} .
\end{aligned}
$$

Set Operations (1/7)

كلية الحاسبات والذكاء الإصطناعي

Union

Let A and B be sets. The union of the sets A and B,
denoted by $A \cup B$, is the set that contains those
elements that are either in A or in B, or in both.

$$
A \cup B=\{x \mid x \in A \vee x \in B\}
$$

Set Operations (1/7)

Union

Let A and B be sets. The union of the sets A and B, denoted by $A \cup B$, is the set that contains those elements that are either in A or in B, or in both.

$A \cup B$ is shaded.

Set Operations (1/7)

Union

Let A and B be sets. The union of the sets A and B,
denoted by $A \cup B$, is the set that contains those
elements that are either in A or in B, or in both.

The union of the sets $\{1,3,5\}$ and $\{1,2,3\}$ is the set $\{1,2,3,5\}$

Set Operations (2/7)

Intersection

Let A and B be sets. The intersection of the sets A and
B, denoted by $A \cap B$, is the set that contains those elements that are in both A and B.

$$
A \cap B=\{x \mid x \in A \wedge x \in B\}
$$

Set Operations (2/7)

Intersection

Let A and B be sets. The intersection of the sets A and B, denoted by $A \cap B$, is the set that contains those elements that are in both A and B.

Set Operations (2/7)

Intersection

Let A and B be sets. The intersection of the sets A and
B, denoted by $A \cap B$, is the set that contains those elements that are in both A and B.

The intersection of the sets $\{1,3,5\}$ and $\{1,2,3\}$ is the set $\{1,3\}$

Set Operations (3/7)

كلية الحاسبات والذكاء الإصطناعي

Disjoint

Two sets are called disjoint if their intersection is the empty set.

$$
A \cap B=\emptyset
$$

Set Operations (4/7)

كلية الحاسبات والذكاء الإصطناعي

Difference

Let A and B be sets. The difference of A and B, denoted by $A-B$, is the set containing those elements that are in A but not in B.

$$
A-B=\{x \mid x \in A \wedge x \notin B\}
$$

Set Operations (4/7)

كلية الحاسبات والذكاء الإصطناعي

Difference

Let A and B be sets. The difference of A and B, denoted by $A-B$, is the set containing those elements that are in A but not in B.

$$
\begin{gathered}
A=\{1,3,5\}, \quad B=\{1,2,3\} \\
A-B=\{5\}
\end{gathered}
$$

Set Operations (4/7)

Difference

Set Operations (5/7)

Complement

Let U be the universal set.
The complement of the set A, denoted by \bar{A}
An element x belongs to U if and only if $x \notin A$.

$$
\bar{A}=\{x \in U \mid x \notin A\}
$$

Set Operations (5/7)

Complement

Let U be the universal set.
The complement of the set A, denoted by \bar{A}
An element x belongs to U if and only if $x \notin A$.

$$
\begin{gathered}
U=\{1,2,3,4,5\}, \quad A=\{1,3\} \\
\bar{A}=\{2,4,5\}
\end{gathered}
$$

Set Operations (5/7)

Complement

\bar{A} is shaded.

Set Operations (6/7)

كلية الحاسبات والذكاء الإصطناعي

Generalized Unions

We use the notation

$$
A_{1} \cup A_{2} \cup \cdots \cup A_{n}=\bigcup_{i=1}^{n} A_{i}
$$

to denote the union of the sets $A_{1}, A_{2}, \ldots, A_{n}$.

Set Operations (6/7)

كلية الحاسبات والذكاء الإصطناعي

Generalized Unions

$A \cup B \cup C$ is shaded.

Set Operations (7/7)

```
كلية الحاسبات وال\كاء الإصطناعي
```


Generalized Intersections

We use the notation

$$
A_{1} \cap A_{2} \cap \cdots \cap A_{n}=\bigcap_{i=1}^{n} A_{i}
$$

to denote the intersection of the sets $A_{1}, A_{2}, \ldots, A_{n}$.

Set Operations (7/7)

كلية الحاسبات والذكاء الإصطناعي

Generalized Intersections

Video Lectures

All Lectures: https://www.youtube.com/playlist?list=PLxlvc-MGUsGgZIMVYOUEtUHJmfUquLiwz

https://www.youtube.com/watch?v=|FEEFRCWoBEElist=PLxlvc-

https://www.youtube.com/watch?v=RdbDHRDddn3YGlist=PLx|veMEDsEgZIMVYOEEtUHJmfUquLiwzZindex=II
https://www.youtube.com/watch?v=iSuDPBuDZzIUClist=PLxlvcMEDsEqZIMVYOEEtUHUmfUquLjwZZindex=12

Up to time 00:31:18

Up to time 00:12:46

Thank You

Dr. Ahmed Hagag
ahagag@fri.bu.edu.eg

