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Negating Quantified Expressions:

𝑃(𝑥) is the statement "𝑥 has taken a course in calculus" and 

the domain consists of the students in your class.

∀𝒙𝑷(𝒙) :
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Negating Quantified Expressions:

𝑃(𝑥) is the statement "𝑥 has taken a course in calculus" and 

the domain consists of the students in your class.

∀𝒙𝑷(𝒙) :

"Every student in your class has taken a course in calculus"
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Negating Quantified Expressions:

𝑃(𝑥) is the statement "𝑥 has taken a course in calculus" and 
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Negating Quantified Expressions:

𝑃(𝑥) is the statement "𝑥 has taken a course in calculus" and 

the domain consists of the students in your class.

∀𝒙𝑷(𝒙) :

"Every student in your class has taken a course in calculus"

The negation of this statement is

"There is at least one student in your class who has not taken a course 

in calculus"
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Negating Quantified Expressions:

𝑃(𝑥) is the statement "𝑥 has taken a course in calculus" and 

the domain consists of the students in your class.

∀𝒙𝑷(𝒙) :

"Every student in your class has taken a course in calculus"

The negation of this statement is

"There is at least one student in your class who has not taken a course 

in calculus"

¬∀𝒙𝑷(𝒙)
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Negating Quantified Expressions:

𝑃(𝑥) is the statement "𝑥 has taken a course in calculus" and 

the domain consists of the students in your class.

∀𝒙𝑷(𝒙) :

"Every student in your class has taken a course in calculus"

The negation of this statement is

"There is at least one student in your class who has not taken a course 

in calculus"

¬∀𝒙𝑷(𝒙) ≡ ∃𝒙¬𝑷(𝒙)
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Negating Quantified Expressions:

𝑃(𝑥) is the statement "𝑥 has taken a course in calculus" and 

the domain consists of the students in your class.

∃𝒙𝑷(𝒙) :
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Negating Quantified Expressions:

𝑃(𝑥) is the statement "𝑥 has taken a course in calculus" and 

the domain consists of the students in your class.

∃𝒙𝑷(𝒙) :

“At least one student in your class has taken a course in calculus"
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Negating Quantified Expressions:

𝑃(𝑥) is the statement "𝑥 has taken a course in calculus" and 

the domain consists of the students in your class.

∃𝒙𝑷(𝒙) :

“At least one student in your class has taken a course in calculus"
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Negating Quantified Expressions:

𝑃(𝑥) is the statement "𝑥 has taken a course in calculus" and 

the domain consists of the students in your class.

∃𝒙𝑷(𝒙) :

“At least one student in your class has taken a course in calculus"

The negation of this statement is

"Every student in this class has not taken calculus"
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Negating Quantified Expressions:

𝑃(𝑥) is the statement "𝑥 has taken a course in calculus" and 

the domain consists of the students in your class.

∃𝒙𝑷(𝒙) :

“At least one student in your class has taken a course in calculus"

The negation of this statement is

"Every student in this class has not taken calculus"

¬∃𝒙𝑷(𝒙)
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Negating Quantified Expressions:

𝑃(𝑥) is the statement "𝑥 has taken a course in calculus" and 

the domain consists of the students in your class.

∃𝒙𝑷(𝒙) :

“At least one student in your class has taken a course in calculus"

The negation of this statement is

"Every student in this class has not taken calculus"

¬∃𝒙𝑷(𝒙) ≡ ∀𝒙¬𝑷(𝒙)
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Valid Arguments in Propositional Logic

Consider the following argument involving propositions 

(which, by definition, is a sequence of propositions):

"If you have a current password, then you can log onto the network."

"You have a current password."

Therefore,

"You can log onto the network."

14©Ahmed Hagag
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Valid Arguments in Propositional Logic

Consider the following argument involving propositions 
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"If you have a current password, then you can log onto the network."

"You have a current password."
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"You can log onto the network."
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Valid Arguments in Propositional Logic

Consider the following argument involving propositions 

(which, by definition, is a sequence of propositions):

𝑝 → 𝑞

𝑝

_______________

∴ 𝑞
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Valid Arguments in Propositional Logic

Consider the following argument involving propositions 

(which, by definition, is a sequence of propositions):

𝑝 → 𝑞

𝑝

_______________

∴ 𝑞
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This argument is valid if 𝑝 → 𝑞 ∧ 𝑝 → 𝑞 is a tautology.



Valid Arguments in Propositional Logic

An argument in propositional logic is a sequence of 

propositions. All the proposition in the argument are called 

premises and the final proposition is called the conclusion.
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𝑝 → 𝑞

𝑝
_______________

∴ 𝑞

Premises 

Conclusion

This argument is valid if 𝑝 → 𝑞 ∧ 𝑝 → 𝑞 is a tautology.



Valid Arguments in Propositional Logic

We can always use a truth table to show that an argument 

form is valid.
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𝑝

_______________

∴ 𝑞



Valid Arguments in Propositional Logic

We can always use a truth table to show that an argument 

form is valid.
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𝒑 𝒒 𝒑 → 𝒒

𝐓 𝐓 𝐓

𝐓 𝐅 𝐅

𝐅 𝐓 𝐓

𝐅 𝐅 𝐓

Premise 1

𝑝 → 𝑞

𝑝

_______________

∴ 𝑞



Valid Arguments in Propositional Logic

We can always use a truth table to show that an argument 

form is valid.
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𝒑 𝒒 𝒑 → 𝒒 𝒑

𝐓 𝐓 𝐓 𝐓

𝐓 𝐅 𝐅 𝐓

𝐅 𝐓 𝐓 𝐅

𝐅 𝐅 𝐓 𝐅

Premise 1 Premise 2

𝑝 → 𝑞

𝑝

_______________

∴ 𝑞



Valid Arguments in Propositional Logic

We can always use a truth table to show that an argument 

form is valid.
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𝒑 𝒒 𝒑 → 𝒒 𝒑 (𝒑 → 𝒒) ∧ 𝒑

𝐓 𝐓 𝐓 𝐓 𝐓

𝐓 𝐅 𝐅 𝐓 𝐅

𝐅 𝐓 𝐓 𝐅 𝐅

𝐅 𝐅 𝐓 𝐅 𝐅

Premise 1 Premise 2

𝑝 → 𝑞

𝑝

_______________

∴ 𝑞



Valid Arguments in Propositional Logic

We can always use a truth table to show that an argument 

form is valid.
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𝒑 𝒒 𝒑 → 𝒒 𝒑 (𝒑 → 𝒒) ∧ 𝒑 𝒒

𝐓 𝐓 𝐓 𝐓 𝐓 𝐓

𝐓 𝐅 𝐅 𝐓 𝐅 𝐅

𝐅 𝐓 𝐓 𝐅 𝐅 𝐓

𝐅 𝐅 𝐓 𝐅 𝐅 𝐅

Premise 1 Premise 2 Conclusion

𝑝 → 𝑞

𝑝

_______________

∴ 𝑞



Valid Arguments in Propositional Logic

We can always use a truth table to show that an argument 

form is valid.
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𝒑 𝒒 𝒑 → 𝒒 𝒑 (𝒑 → 𝒒) ∧ 𝒑 𝒒 ((𝒑 → 𝒒) ∧ 𝒑) → 𝒒

𝐓 𝐓 𝐓 𝐓 𝐓 𝐓 𝐓

𝐓 𝐅 𝐅 𝐓 𝐅 𝐅 𝐓

𝐅 𝐓 𝐓 𝐅 𝐅 𝐓 𝐓

𝐅 𝐅 𝐓 𝐅 𝐅 𝐅 𝐓

Premise 1 Premise 2 Conclusion

𝑝 → 𝑞

𝑝

_______________

∴ 𝑞

𝑝 → 𝑞 ∧ 𝑝 → 𝑞 is a tautology
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Example1

Using the truth table to show that the hypotheses 

𝑝 ∨ 𝑞

¬𝑝 ∨ 𝑟

lead to the conclusion 

𝑞 ∨ 𝑟
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Example1

Using the truth table to show that the hypotheses 

𝑝 ∨ 𝑞

¬𝑝 ∨ 𝑟

-----------

𝑞 ∨ 𝑟
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𝒑 𝒒 𝒓 𝒑 ∨ 𝒒 ¬𝒑 ¬𝒑 ∨ 𝒓 (𝒑 ∨ 𝒒) ∧ (¬𝒑 ∨ 𝒓) 𝒒 ∨ 𝒓

𝐓 𝐓 𝐓 𝐓 𝐅 𝐓 𝐓 𝐓

𝐓 𝐓 𝐅 𝐓 𝐅 𝐅 𝐅 𝐓

𝐓 𝐅 𝐓 𝐓 𝐅 𝐓 𝐓 𝐓

𝐓 𝐅 𝐅 𝐓 𝐅 𝐅 𝐅 𝐅

𝐅 𝐓 𝐓 𝐓 𝐓 𝐓 𝐓 𝐓

𝐅 𝐓 𝐅 𝐓 𝐓 𝐓 𝐓 𝐓

𝐅 𝐅 𝐓 𝐅 𝐓 𝐓 𝐅 𝐓

𝐅 𝐅 𝐅 𝐅 𝐓 𝐓 𝐅 𝐅

Premise 1 Premise 2 Conclusion



Example2

Using the rules of inference to show that the hypotheses 

¬𝑝 ∧ 𝑞

𝑟 → 𝑝

¬𝑟 → 𝑠

𝑠 → 𝑡

lead to the conclusion 

𝑡
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Example2

¬𝑝 ∧ 𝑞

∴ ¬𝑝
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Example2

¬𝑝 ∧ 𝑞

∴ ¬𝑝

¬𝑝

𝑟 → 𝑝
∴ ¬𝑟
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Example2

¬𝑟

¬𝑟 → 𝑠

∴ 𝑠
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Example2

¬𝑟

¬𝑟 → 𝑠

∴ 𝑠

𝑠

𝑠 → 𝑡

∴ 𝑡
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conclusion 
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• Sets.

• Functions.

• Sequences, and Summations.

• Matrices.

Chapter 2: Basic Structures
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A set is an unordered collection of objects.

The objects in a set are called the elements, or 

members, of the set. A set is said to contain its 

elements.
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𝑆 = {𝑎, 𝑏, 𝑐, 𝑑}

We write 𝑎 ∈ 𝑆 to denote that 𝑎 is an element of 

the set 𝑆. The notation 𝑒 ∉ 𝑆 denotes that 𝑒 is not 

an element of the set 𝑆. 
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The set 𝑂 of odd positive integers less than 10 

can be expressed by 𝑂 = {1, 3, 5, 7, 9}. 

The set of positive integers less than 100 can be 

denoted by {1, 2, 3, … , 99}. 

ellipses (…)
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Another way to describe a set is to use set 

builder notation.

The set 𝑂 of odd positive integers less than 10 

can be expressed by 𝑂 = {1, 3, 5, 7, 9}. 
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Interval Notation

Closed interval   [𝑎, 𝑏]
Open interval     (𝑎, 𝑏)

[𝑎, 𝑏] = {𝑥 | 𝑎 ≤ 𝑥 ≤ 𝑏}

[𝑎, 𝑏) = {𝑥 | 𝑎 ≤ 𝑥 < 𝑏}

(𝑎, 𝑏] = {𝑥 | 𝑎 < 𝑥 ≤ 𝑏}

(𝑎, 𝑏) = {𝑥 | 𝑎 < 𝑥 < 𝑏}
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If 𝐴 and 𝐵 are sets, then 𝐴 and 𝐵 are equal if and only if 

∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵). We write 𝐴 = 𝐵, if 𝐴 and 𝐵 are 

equal sets.

• The sets {1, 3 , 5} and {3, 5 , 1} are equal, because 

they have the same elements.

• {1 , 3 , 3 , 5 , 5 , 5} is the same as the set 

{1, 3 , 5} because they have the same elements.
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Empty Set

There is a special set that has no elements. This set is 

called the empty set, or null set, and is denoted by ∅. 

The empty set can also be denoted by { }
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Cardinality

The cardinality is the number of distinct elements in 𝑆.

The cardinality of 𝑆 is denoted by 𝑆 .
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Example1

𝑆 = {𝑎, 𝑏, 𝑐, 𝑑}
𝑆 = 4

𝐴 = {1, 2, 3, 7, 9}

∅ =
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Discrete Mathematics

Example1

𝑆 = {𝑎, 𝑏, 𝑐, 𝑑}
𝑆 = 4

𝐴 = {1, 2, 3, 7, 9}
𝐴 = 5

∅ =
|∅| = 0
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Example2

𝑆 = 𝑎, 𝑏, 𝑐, 𝑑, 2

𝑆 =

𝐴 = {1, 2, 3, {2,3}, 9}
𝐴 =

{∅} = { }
∅ =
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Example2

𝑆 = 𝑎, 𝑏, 𝑐, 𝑑, 2

𝑆 = 5

𝐴 = {1, 2, 3, {2,3}, 9}
𝐴 = 5

{∅} = { }
∅ = 1



48©Ahmed Hagag

Sets (12/24)

Discrete Mathematics

Infinite 

A set is said to be infinite if it is not finite.

The set of positive integers is infinite.

𝑍+ = {1,2,3, … }
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Subset 

The set 𝐴 is said to be a subset of 𝐵 if and only if
every element of 𝐴 is also an element of 𝐵 .

We use the notation 𝐴 ⊆ 𝐵 to indicate that
𝐴 is a subset of the se𝑡 𝐵 .

𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)
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Sets (13/24)

Discrete Mathematics

Subset 

The set 𝐴 is said to be a subset of 𝐵 if and only if
every element of 𝐴 is also an element of 𝐵 .

We use the notation 𝐴 ⊆ 𝐵 to indicate that
𝐴 is a subset of the se𝑡 𝐵 .

𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)

(𝑨 ⊆ 𝑩) ≡ (𝑩 ⊇ 𝑨)
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Subset 

To show that two sets A and B are equal, show that 
𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐴.
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Proper Subset 

The set 𝐴 is a subset of the set 𝐵 but that 𝐴 ≠ 𝐵,
we write 𝐴 ⊂ 𝐵
and say that 𝐴 is a 𝐩𝐫𝐨𝐩𝐞𝐫 𝐬𝐮𝐛𝐬𝐞𝐭 of 𝐵.

𝐴 ⊂ 𝐵 ↔ ∀𝑥 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ∧ ∃𝑥 𝑥 ∈ 𝐵 ∧ 𝑥 ∉ 𝐴



53©Ahmed Hagag

Sets (15/24)

Example

For each of the following sets,
determine whether 3 is an element of that set.

1,2,3,4

1 , 2 , 3 , 4

1,2, 1,3

Discrete Mathematics
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Sets (15/24)

Example

For each of the following sets,
determine whether 3 is an element of that set.

3 ∈ 1,2,3,4

3 ∉ 1 , 2 , 3 , 4

3 ∉ 1,2, 1,3

Discrete Mathematics



55©Ahmed Hagag
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Venn Diagram

𝐴 = 1,2,3,4,7
𝐵 = 0,3,5,7,9
𝐶 = 1,2
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Venn Diagram

𝐴 = 1,2,3,4,7
𝐵 = 0,3,5,7,9
𝐶 = 1,2 1, 2

4

3, 7 0, 5, 9

Universal Set
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Power Set

𝐓𝐡𝐞 𝐬𝐞𝐭 𝐨𝐟 𝐚𝐥𝐥 𝐬𝐮𝐛𝐬𝐞𝐭𝐬.

If the set is 𝑆. The power set of 𝑆 is denoted by 𝑃(𝑆).

The number of elements in the power set is 2 𝑆

Discrete Mathematics
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Power Set

𝐓𝐡𝐞 𝐬𝐞𝐭 𝐨𝐟 𝐚𝐥𝐥 𝐬𝐮𝐛𝐬𝐞𝐭𝐬.

If the set is 𝑆. The power set of 𝑆 is denoted by 𝑃(𝑆).

The number of elements in the power set is 2 𝑆

𝑆 = 1,2,3

𝑃 𝑆 = 2𝑆

= ∅, 1 , 2 , 3 , 1,2 , 1,3 , 2,3 , 1,2,3

Discrete Mathematics

𝑷 𝑺 = 𝟐𝟑 = 𝟖 𝐞𝐥𝐞𝐦𝐞𝐧𝐭𝐬
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Sets (19/24)

Example1

Discrete Mathematics
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Sets (19/24)

Example1

Discrete Mathematics
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Sets (20/24)

Example2

Discrete Mathematics
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Sets (20/24)

Example2

Discrete Mathematics



63©Ahmed Hagag

Sets (21/24)

The ordered 𝒏-tuple

The ordered 𝑛-tuple (𝑎1, 𝑎2, … , 𝑎𝑛) is the ordered 

collection that has 𝑎1 as its first element, 𝑎2 as its 

second element, … , and 𝑎𝑛 as its 𝑛th element.

In particular, ordered 2-tuples are called ordered 

pairs (e.g., the ordered pairs (𝑎, 𝑏))

Discrete Mathematics
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Sets (22/24)

Cartesian Products

Let 𝐴 and 𝐵 be sets. 

The Cartesian product of 𝐴 and 𝐵, denoted by 𝐴 × 𝐵, 

is the set of all ordered pairs (𝑎, 𝑏), where 𝑎 ∈ 𝐴 and 

𝑏 ∈ 𝐵 . Hence, 𝐴 × 𝐵 = {(𝑎, 𝑏) | 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵}.

Discrete Mathematics
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Sets (22/24)

Cartesian Products - Example

Let 𝐴 = 1,2 , and 𝐵 = 𝑎, 𝑏, 𝑐

𝐴 × 𝐵 = 1, 𝑎 , 1, 𝑏 , 1, 𝑐 , 2, 𝑎 , 2, 𝑏 , 2, 𝑐 .

𝐴 × 𝐵 = 𝐴 ∗ 𝐵 = 2 ∗ 3 = 6

Discrete Mathematics
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Sets (22/24)

Cartesian Products - Example

Let 𝐴 = 1,2 , and 𝐵 = 𝑎, 𝑏, 𝑐

𝐴 × 𝐵 = 1, 𝑎 , 1, 𝑏 , 1, 𝑐 , 2, 𝑎 , 2, 𝑏 , 2, 𝑐 .

𝐴 × 𝐵 = 𝐴 ∗ 𝐵 = 2 ∗ 3 = 6

Find 𝐵 × 𝐴 ?

Discrete Mathematics
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Sets (23/24)

The Cartesian product of more than two sets.

The Cartesian product of the sets 𝐴1, 𝐴2, … , 𝐴𝑛, 

denoted by 𝐴1 × 𝐴2 × ⋯ × 𝐴𝑛, is the set of ordered 

𝑛-tuples (𝑎1, 𝑎2, … , 𝑎𝑛), where 𝑎𝑖 belongs to 𝐴𝑖 for 

𝑖 = 1, 2, … , 𝑛. In other words, 

𝐴1 × 𝐴2 × ⋯ × 𝐴𝑛 =

𝑎1, 𝑎2, … , 𝑎𝑛 𝑎𝑖 ∈ 𝐴𝑖 for 𝑖 = 1, 2, … , 𝑛 .

Discrete Mathematics
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Sets (24/24)

Example:

Discrete Mathematics
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Set Operations (1/7)

Union

Let 𝐴 and 𝐵 be sets. The union of the sets A and B , 

denoted by 𝐴 ∪ 𝐵, is the set that contains those 

elements that are either in 𝐴 or in 𝐵 , or in both.

Discrete Mathematics
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Set Operations (1/7)

Union

Let 𝐴 and 𝐵 be sets. The union of the sets A and B , 

denoted by 𝐴 ∪ 𝐵, is the set that contains those 

elements that are either in 𝐴 or in 𝐵 , or in both.
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Set Operations (1/7)

Union

Let 𝐴 and 𝐵 be sets. The union of the sets A and B , 

denoted by 𝐴 ∪ 𝐵, is the set that contains those 

elements that are either in 𝐴 or in 𝐵 , or in both.

The union of the sets {1, 3, 5} and {1, 2, 3}

is the set {1, 2, 3, 5}

Discrete Mathematics
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Set Operations (2/7)

Intersection

Let 𝐴 and 𝐵 be sets. The intersection of the sets A and 

B , denoted by 𝐴 ∩ 𝐵, is the set that contains those 

elements that are in both 𝐴 and 𝐵.

Discrete Mathematics
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Set Operations (2/7)

Intersection

Let 𝐴 and 𝐵 be sets. The intersection of the sets A and 

B , denoted by 𝐴 ∩ 𝐵, is the set that contains those 

elements that are in both 𝐴 and 𝐵.
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Set Operations (2/7)

Intersection

Let 𝐴 and 𝐵 be sets. The intersection of the sets A and 

B , denoted by 𝐴 ∩ 𝐵, is the set that contains those 

elements that are in both 𝐴 and 𝐵.

The intersection of the sets {1, 3, 5} and {1, 2, 3}

is the set {1, 3}

Discrete Mathematics
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Set Operations (3/7)

Disjoint

Two sets are called disjoint if their intersection is the 

empty set.

𝐴 ∩ 𝐵 = ∅

Discrete Mathematics
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Set Operations (4/7)

Difference

Let 𝐴 and 𝐵 be sets. The difference of 𝐴 and 𝐵 , 

denoted by 𝐴 − 𝐵 , is the set containing those

elements that are in 𝐴 but not in 𝐵. 

Discrete Mathematics
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Set Operations (4/7)

Difference

Let 𝐴 and 𝐵 be sets. The difference of 𝐴 and 𝐵 , 

denoted by 𝐴 − 𝐵 , is the set containing those

elements that are in 𝐴 but not in 𝐵. 

𝐴 = 1,3,5 , 𝐵 = 1,2,3

𝐴 − 𝐵 = 5

Discrete Mathematics
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Set Operations (4/7)

Difference

Discrete Mathematics
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Set Operations (5/7)

Complement

Let 𝑈 be the universal set.

The complement of the set 𝐴 , denoted by ҧ𝐴

An element 𝑥 belongs to 𝑈 if and only if 𝑥 ∉ 𝐴.

Discrete Mathematics
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Set Operations (5/7)

Complement

Let 𝑈 be the universal set.

The complement of the set 𝐴 , denoted by ҧ𝐴

An element 𝑥 belongs to 𝑈 if and only if 𝑥 ∉ 𝐴.

𝑈 = 1,2,3,4,5 , 𝐴 = 1,3

ҧ𝐴 = 2,4,5

Discrete Mathematics
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Set Operations (5/7)

Complement

Discrete Mathematics
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Set Operations (6/7)

Generalized Unions

Discrete Mathematics



83©Ahmed Hagag

Set Operations (6/7)

Generalized Unions

Discrete Mathematics
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Set Operations (7/7)

Generalized Intersections

Discrete Mathematics
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Set Operations (7/7)

Generalized Intersections

Discrete Mathematics
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Video Lectures

https://www.youtube.com/playlist?list=PLxIvc-MGOs6gZlMVYOOEtUHJmfUquCjwz

Discrete Mathematics

All Lectures: 

Lecture #3:  

https://www.youtube.com/watch?v=1FEEjRCWo6E&list=PLxIvc-

MGOs6gZlMVYOOEtUHJmfUquCjwz&index=10

https://www.youtube.com/watch?v=RdbOHQddn3Y&list=PLxIvc-

MGOs6gZlMVYOOEtUHJmfUquCjwz&index=11

https://www.youtube.com/watch?v=bNNpZa3fwq0&list=PLxIvc-

MGOs6gZlMVYOOEtUHJmfUquCjwz&index=8 Up to time 00:31:18

https://www.youtube.com/watch?v=iSuD96uQ2zU&list=PLxIvc-

MGOs6gZlMVYOOEtUHJmfUquCjwz&index=12
Up to time 00:12:46

https://www.youtube.com/playlist?list=PLxIvc-MGOs6gZlMVYOOEtUHJmfUquCjwz
https://www.youtube.com/watch?v=1FEEjRCWo6E&list=PLxIvc-MGOs6gZlMVYOOEtUHJmfUquCjwz&index=10
https://www.youtube.com/watch?v=1FEEjRCWo6E&list=PLxIvc-MGOs6gZlMVYOOEtUHJmfUquCjwz&index=10
https://www.youtube.com/watch?v=RdbOHQddn3Y&list=PLxIvc-MGOs6gZlMVYOOEtUHJmfUquCjwz&index=11
https://www.youtube.com/watch?v=RdbOHQddn3Y&list=PLxIvc-MGOs6gZlMVYOOEtUHJmfUquCjwz&index=11
https://www.youtube.com/watch?v=bNNpZa3fwq0&list=PLxIvc-MGOs6gZlMVYOOEtUHJmfUquCjwz&index=8
https://www.youtube.com/watch?v=bNNpZa3fwq0&list=PLxIvc-MGOs6gZlMVYOOEtUHJmfUquCjwz&index=8
https://www.youtube.com/watch?v=iSuD96uQ2zU&list=PLxIvc-MGOs6gZlMVYOOEtUHJmfUquCjwz&index=12
https://www.youtube.com/watch?v=iSuD96uQ2zU&list=PLxIvc-MGOs6gZlMVYOOEtUHJmfUquCjwz&index=12


Dr. Ahmed Hagag
ahagag@fci.bu.edu.eg


	Slide 1: Discrete Mathematics
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87

